
1
UP899802

DSALG Report
Data structures and algorithms

Computer Science

UP899802

2
UP899802

Contents

Pg.:

1. Title

2. List of Contents – current

3-4. Critical review of Approach 1

4-5. Approach 2

5-7. Approach 3

7. Comparison

3
UP899802

Critical review of Approach 1

SSL use in approach 1
A SSL is a linear data structure (Each node has a unique predecessor and unique successor). Every

node (except the last one) contains a reference (location/Link) to the next node.

The above model shows how this will work. Each data portion of each node holds a category name

and another SSL that contains all the species of a category. The species SSL holds a species name and

details on that species when required.

SSL’s can be created in a forward (Inserted A-Z) or backward(Inserted Z-A) direction, for this use

either is suitable as long as the resulting list is ordered from A to Z.

Operations
• List all species of an orchid for a specified category, in alphabetical order.

o A linear searching algorithm will be used to find the specified category, the species

list will then be traversed linearly with each data value being returned. Time

proportional n, O(n)

• Search for an orchid, given its category and species, and output details of the orchid

o A linear searching algorithm will be used to find the specified category and then

species, assuming details of the orchid is present in the data portion of the species

node found this will be returned. Time proportional 2n, O(n)

• Insert a new species of orchid given its category

o A linear searching algorithm will be used to find the specified category and the

position alphabetically where it will be inserted in the species list. Time proportional

2n, O(n)

• Delete a species of orchid given its category

o A linear searching algorithm will be used to find the specified category the species

SSL can then be deleted. Time proportional n, O(n)

• Create a new category of orchid and insert a new species with details into the new Category.

o A linear searching algorithm will be used to find the position alphabetically where

the new category is to be inserted a new species SSL is added to the data contained

in the new node. Time proportional n, O(n)

Efficiency of operations

• All searching must be linear O(n)

• Insertion and Deletion is always constant O(1) (Excluding searching)

o Including searching which always needs to be done O(n), except for insertion at the

start of the list O(1).

• Values closer to A will be found faster than values close to Z

Conclusion
SSL’s allow dynamic sizing and ease of insertion in comparison to arrays, for this case an SSL would

work well for the category’s.

4
UP899802

Random access is not allowed. Elements must be accessed sequentially starting from the

first node. So, we cannot do binary search or any over searching algorithm that does not visit

nodes sequentially with linked lists. Finding an element takes linear time O(n). Insertion and

deletion also take linear time as a linear search has to be completed first.

In this case the use of an SSL for orchid categories can be justified as the data set is small.

However, as a structure for the species of orchid that may contain much larger data sets its

use would not be optimal due to the drawbacks above.

Approach 2

SLL & Skip list use in approach 2
A Skip List is an extension of an ordered singly linked list with additional forward links, added in a

randomized way, so that a search in the list can quickly skip parts of the list. A skip list will be used

for the species of orchid. A linked list from approach 1 will still be used for the categories.

Each data portion will hold the name of the species and any details if needed.

Operations
• List all species of an orchid for a specified category, in alphabetical order.

o A linear searching algorithm will be used to find the specified category, the species

list will then be traversed linearly on level 0 of the skip list with each data value

being returned. Time proportional n, O(n)

• Search for an orchid, given its category and species, and output details of the orchid

o A linear searching algorithm will be used to find the specified category. Another

search for species will be performed this will be a linear search adapted to skip list

(see details below), assuming details of the orchid is present in the data portion of

the species node found this will be returned. The best case will be O(log2 𝑛) and the

worse-case will be O(n)

• Insert a new species of orchid given its category

o A linear searching algorithm will be used to find the specified category. Another

search for species will be performed this will be a linear search adapted to skip list

(see details below) inserted alphabetically to its correct position. The best case will

be O(log2 𝑛) and the worse-case will be O(n)

• Delete a species of orchid given its category

o A linear searching algorithm will be used to find the specified category the species

SSL can then be deleted. Time proportional n, O(n)

• Create a new category of orchid and insert a new species with details into the new Category.

5
UP899802

o A linear searching algorithm will be used to find the position alphabetically where

the new category is to be inserted a new species skip list is added to the data

contained in the new node. Time proportional n, O(n)

Skip list searching
From A-Z, Starting at the highest level, if the alphabetical order of next node is higher than the

species to be found then keep on moving forward on the same level.

If the alphabetical order of next node is lower than the species to be inserted store the pointer to

the current node and move one level down and continue the search. Repeat until the species if

found.

At the lowest level if the element has not been found it must not exist.

Skip list insertion & deletion
Searching for the alphabetical position to be inserted is completed first. During insertion the number

of levels required for a new node is determined by using a probabilistic technique, a random number

generator for the level of insertion. During the insertion an update array is used to store pointers at

each level prior to insertion. (The best case will be O(log2 𝑛) and the worse-case will be O(n))

Searching for node to be deleted is completed first. Deletion starts once the element is located,

rearrangement of pointers is computed to remove the element form list using an update array. After

deletion of an element there could be levels that contain no elements, so these levels are to be

removed.(The best case will be O(log2 𝑛) and the worse-case will be O(n))

Efficiency of operations

• All searching is best case O(log2 𝑛) and worse-case O(n)

• Insertion and Deletion is always constant O(1) (Excluding searching)

o Including searching which always needs to be done best case O(log2 𝑛) and worse-

case O(n), except for insertion at the start of the list O(1).

• Values can be skipped and found much faster

• Worst case of O(n) if it has no input sequence – in this case it will always be in order A-Z so it

is unlikely to reach the worst case.

Approach 3

SSL & Heap use in approach 2
A heap is a binary tree that is complete and has a root node larger than either child nodes. In this

case a max heap will be used, the highest priority item will be the first species alphabetically

represented in the diagram below by A, child’s of A are species below A in the alphabet. A SSL from

approach 1 will be used for the category’s. Each node of the tree will hold a primary value (Species

name) and extra data such as details.

6
UP899802

Operations
• List all species of an orchid for a specified category, in alphabetical order.

o A linear searching algorithm will be used to find the specified category, the species

heap will then be traversed linearly with each data value being returned. Time

proportional n, O(n)

• Search for an orchid, given its category and species, and output details of the orchid

o A linear searching algorithm will be used to find the specified category. Another

search for species will be performed this will be a binary search, assuming details of

the orchid is present in the data portion of the species node found this will be

returned. Time complexity O(log2 𝑛)

• Insert a new species of orchid given its category

o A linear searching algorithm will be used to find the specified category. A binary

search for species will be performed and the new species is inserted alphabetically

to its correct position. O(log2 𝑛)

• Delete a species of orchid given its category

o A linear searching algorithm will be used to find the specified category the species

SSL can then be deleted. Time proportional n, O(n)

• Create a new category of orchid and insert a new species with details into the new Category.

o A linear searching algorithm will be used to find the position alphabetically where

the new category is to be inserted a new species heap is added to the data

contained in the new node. Time proportional n, O(n)

Heap searching
Heap searching is implemented using a binary search. Iterative implementation O(1). Recursive

implementation O(log2 𝑛)

Heap insertion & deletion
The new item is inserted on to the bottom of the heap, this will destroy the heap property of the

tree you then need to heapify the tree this involves moving the inserted item up the tree until it

either becomes the root or finds a parent that satisfies the max heap property. O(log2 𝑛)

Deletion of the root node of the heap can be completed easily leaving 2 sub trees that must be

merged into a single tree that satisfies the heap. Deletion an element at an intermediary position in

7
UP899802

the heap can be difficult and costly, the element to be deleted is swapped with the last element of

the heap so that it can be more easily deleted we then heapify the tree as in insertion. O(log2 𝑛)

Comparison
All approaches have their respective advantages and disadvantages the table below shows the

efficiency of the 3 common operations each operation needed for the system is comprised of one or

more of these.

 Approach 1 Approach 2 Approach 3

Searching O(n) Best - O(log2 𝑛)
Worst - O(n)

Iterative - O(1)
Recursive - O(log2 𝑛)

Insertion O(n) Best- O(log2 𝑛)
Worst - O(n)

O(log2 𝑛)

Deletion O(n) Best - O(log2 𝑛)
Worst - O(n)

O(log2 𝑛)

Approach 3 yields the greatest efficiency however is the most complex to implement. Approach 2

requires more memory due to its use of a skip list but is easier to implement than approach 3.

Approach 1 offers the most simplicity of all approaches but is the slowest with constant linear

efficiency.

In both approach 2 & 3 I chose to keep a SSL for the categories of orchid this is do to the ease of a

SSL, with a small data set the benefit of more advanced structures is lessened, the efficiency gained

would only be minimal and not worth the time and effort implementing a more advanced data

structure.

Final recommendation
Approach 3 would be my final recommendation it is more difficult to implement and requires more

development time. Although the efficiency gained will improve the speed of the system drastically.

	Critical review of Approach 1
	SSL use in approach 1
	Operations
	Efficiency of operations

	Conclusion

	Approach 2
	SLL & Skip list use in approach 2
	Operations
	Skip list searching
	Skip list insertion & deletion
	Efficiency of operations

	Approach 3
	SSL & Heap use in approach 2
	Operations
	Heap searching
	Heap insertion & deletion

	Comparison
	Final recommendation

