PERSONAL JOURNAL, NOVEMBER 2023

Data analysis, fragmentation and aggregation for
311 calls in Python & SQL using localhost

Zak Graham Rackham

Abstract—Methods used for data analysis considering a data
set of 311 calls in NYC for non-emergency government services
and information. Python and SQL are applied to conduct
statistical analysis using functional and declarative approaches
respectively considering performance, ease of use and readability.
Hypotheses are drawn to direct the analysis toward meaningful
conclusions and correlations, causation’s are considered within
the data context.

Index Terms—Class, IEEEtran, ISIEX, paper, style, template,
typesetting.

I. INTRODUCTION

HE main analytic approach reviewed is python .csv eval-

uation using a linear time algorithm, its time complexity
is proportional to the data set O(n), this method looks at each
row of data as a single entity. A constant K is introduced for
each search condition O(Kn).

To work with large sets of data fragmenting will be used to
process queries, this will allow greater access speed and makes
analysis more manageable from a computational perspective.

More optimised searching is introduced for faster set re-
turns. Data is collated and visualised.

II. HYPOTHESISES

The data set reviewed is likely to contain null values, the set
reviewed is sourced from a governing body second hand via
a third party that catalogues this data making it available to
the public. An API is provided by Socrata Open Data API
(SODA) for filtering querying and aggregation. Data types are
specified relative to this API, therefore conclusions on data
types to be implemented locally must be made.

Corrupted data is unlikely but viable. Integrity of the set can
only be assumed in this case. Data is not fragmented since one
source is provided.

Full analysis will be possible applying SQL & Python. Since
corruption is possible edge cases must be considered. SQL
can be used to retrieve data from the database faster, but
Python offers more flexibility by allowing you to manipulate
and perform computations with the retrieved data.

The number of calls increases from March to August.

e HO Total number of calls from summer month A is less

than spring month B. A < B.
e H1 Total number of calls from summer month A is
greater than spring month B, A > B.

III. COMPARISON
A. Performance

Python is generally slower for extensive computations.
Multi-threading can be used to mitigate this to an extent, since

python is semi multi threaded due to a global interpreter lock
(GIL) only certain library’s using C-based implementations.

SQL has faster performance for simple queries and aggrega-
tions, google analytics can utilise multiple SQL data sources
for aggregation.

B. Functionality

Extensive functionality due to its integration with a wide
variety of libraries. SQL less so due to ecosystem lock-ins.

C. Testing

Python offers extensive unit and integration testing through
the pipeline and code process. SQL is tested during production,
and there are no extensive unit tests

D. Ease of Use

Python has an easy-to-use syntax; however, there are mul-
tiple concepts to learn, which may increase difficulty. SQL is
very beginner-friendly, with fewer concepts to learn

E. Debuging

Debugging in Python is easier with breakpoints to help halt
execution on encountering bugs. SQL is split into multiple files
to help with debugging, but execution occurs at once with no
breakpoints.

IV. JUSTIFICATION

Python is crucial for roles like data scientists as it contains a
range of libraries required to perform multiple tasks like data
manipulation, wrangling, and exploration. Data engineers need
extensive SQL skills for data modeling and ETL tasks. SQL
also requires hosting to use tools such as Google Analytics.

V. PYTHON

A. File System

All files accociated with the project are under the parent folder
of Panaseer. Root is reserved for Python source files, data
contains the subject and fragments of the subject.



PERSONAL JOURNAL, NOVEMBER 2023

B. Coding Methods

The first function 0 (Read Data) is used to return .csv rows to
the console. Logic is then used to loop through the entire set
or a portion thereof. GUI is handled in the main function and
thread.

Separate Query functions are created for various purposes.
These functions store fragments of the data in associated .csv
files.

Figure 1 shows the selection cases for finding the winter
month and summer month in question. Each of these return
data fragments to their own respective .csv files and append
the UIN for each entry to an array for searching and counting.

match select:
[--l"H
print ('no query')
case 1:
X = re.search("~03.%$", str(row[1]))
if x:
print('HIT')
fragmentl.writerow([row[@], row[1]])
arr_fl.append(int(row([@l))

case 2:
x = re.search("”08.%$", str(row[1]))
if x:
print('HIT')
fragment2.writerow([row[@], row[1]])
arr_f2.append(int(row([@]))
case 3:
csv_writer.writerow(['0",

‘1', 'e'l)

Fig. 1. Selection cases using regular expressions

Binary search is implemented to search by UIN as required
by the user.

GUI is handled by the tkinter library in the main thread,
separate threads are used for running count functions, and the
main read function 0.

Pyplot is used for data aggregation and displays a graph at
the end of execution.

VI. SQL
A. Hosting
MS SQL Server 2022 is hosted locally using docker virtu-
alization. This uses a local host for connecting to run queries.
Azure Data Studio is used to connect to the SQL server
self-contained instance, this is used so the server does not
have direct access to the filesystem of the host machine.

zak@Zaks-MacBook-Pro ~ % docker run —e "ACCEPT_EULA=Y" -e "MSSQL_SA_PASSWORD=Password156132" \
-p 1433:1433 --name sa —-hostname sa \

-d \
mcr.microsoft.com/mssql/server:2022-latestf]

Fig. 2. Command to install the SQL Server image and container

B. Database Management System

The Azure Data Studio is used to manage the SQL Server
database. First, the database is created, then the table for the
data to be inserted is created. The BULK INSERT command
can be used to insert .csv formatted data.

BULK

dbo.dbe
'/311_Service_Requests_from_2010_to_Present_20231023.csv"'

FORMAT="CSV",
=2,

Fig. 3. Command to import the dataset

As this database is being hosted locally running into a
storage limit can happen quickly when importing large sets
in full recovery mode. In order to keep the load on storage as
low as possible recovery needs to be set to simple.

VII. RESULTS
A smaller set is considered for a faster data return to test the
algorithms and to check for validity. To check the validity a
comparison can be made via a SQL query on the same set.

80000

60000

40000 -

20000

Fig. 4. Number of calls (reduced set of one million)

The set clearly shows that there is an increase in calls in
August over March

VIII. EVALUATION

The final artifact developed shows promice of being able to
grow to complete analysis to achieve a larger set of hypotheses.
Python is an excellent tool for data analysis however managing
large sets can be a challenge, especially in terms of develop-
ment time. When embarking on a larger data science problem
in the future SQL will be used instead where the data is well
organized.

Python allows flexibility, this is reliant on the architecture
being well-designed before the code implementation. Making
justified assumptions will aid this process. Moving forward
with the project deliverable and aim need to be considered
within the context with greater rigor in order to develop an
environment in Python that allows the flexibility required to
tackle more complex aggregation.



PERSONAL JOURNAL, NOVEMBER 2023

le6

3.0 1

2.51

2.01

154

104

0.5 1

0.0 -

Fig. 5. Number of calls (entire set)

IX. CONCLUTIONS

In the context of this data set the hypothesis H1 was correct
that calls increased during March compared to August. Further
analysis is necessary to draw a complete conclusion and cor-
relations. Employing a more object-orientated approach would
be beneficial for recovery and other improvement aspects.
Optimization is necessary for faster computation using pandas.

Since the data is unordered, ordering the data by UIN or
date would be the next step for a stronger analysis.



