
Robotic pick and place using computer vision for
object localisation and sensory real-time collision

avoidance
Zak Graham Rackham

Faculty of technology
University of portsmouth

Portsmouth, UK
up899802@myport.ac.uk

Abstract—This paper explores the methods used in pick and
place operations for object manipulation and sorting within a
virtual environment (V-Rep) using computer vision for object
localisation and proximity sensor measurements for object local-
isation and real-time collision avoidance.

I. INTRODUCTION

A. The problem

The problem this paper will explore is object manipulation
and sorting for warehouse fulfilment. Boxes are retrieved from
a conveyor belt and sorted by color to the correct bay. Boxes
are carried by the robots’ arm or dropped to a platform
attached to the robot for re-orientation and placement. The
robot also needs to avoid human workers within the scene.

B. Motivation

The motivation of this paper is to further decrease item
fulfilment time. Amazon uses a mobile robot to move shelving,
each of these robots is equipped with a collision sensor.
Amazon also utilize a robotic arm called ”Robo Stow” that
can move pallets and transfer them to smaller robots. After
adopting the use of robotics amazon was able to cut opera-
tional costs in fulfilment centers by 20% [1]. However, robotics
is not utilized for loading items into delivery vehicles.

C. State of the art

I consider the state of the art to better evaluate current
research to identify how the field has developed and in witch
direction it’s heading and to implement appropriate methods
based on their findings.

1) Software frameworks: Software framework and architec-
ture is key in implementing various technologies for robotic
applications. The robotic operating system abbreviated as
”ROS” is a Linux based middle-ware that uses peer to peer
communication comprised as a network of executable pro-
grams denoted as nodes that communicate with each over
at runtime. Nodes are registered to a ROS master node that
handles routing of information through publishing and sub-
scribing messages via topics [3]. ROS can be implemented as
a distributed system running on multiple computers or micro-
controllers. This creates a dynamic and flexible environment

for robotic applications. Various robotic simulation environ-
ments exist the one used in this paper is Coppelia robotics
v-rep version 3.6.2.(rev0), v-rep is also capable of being
inter-operable with ROS via the CoppeliaSim API framework
CoppeliaSim can act as a ROS node that other nodes can
communicate with via ROS services (publishers & subscribers)
allowing for more comprehensive real world testing, another
example of such an environment is Gazebo. These software
environments provide a virtual gateway to developing and
testing robotic systems and algorithms without the cost of real
world hardware.

2) Hardware: Sensor technology is vital for robotics and
they allow a computer to understand and interpret its envi-
ronment. Proximity sensors by definition are used to detect
nearness in space, there are a wide range of sensors featuring
radically different operating principles [4].Ultrasonic sensors
utilize ultrasonic pulses of sound to detect the presence of
an object, or with additional processing, the distance to the
object.They use both a transmitter and receiver and the prin-
ciples of echolocation to function, by calculating the time to
receive a return pulse knowing the speed of sound (dry air at 20
degrees = 343m/s) distance to an object can be calculated [4].
Photoelectric Proximity Sensors are used to detect the presence
of an object but distance to the object cannot be calculated
[4]. Laser and Rangefinder Sensors use the same principle
of function as ultrasonic sensors, except they use light and
electromagnetic beams respectively. Inductive Sensors are the
most archaic yet still viable sensory technology that use
magnetic induction to detect variations in a magnetic field
when a metal object passes through a generated field [4].

Robotic movement is achieved using kinematic functions
and actuators [8]. Various actuators exist, the most common
being DC motors, stepper motors and servos. Motor drivers
are used to interface with a computer to apply pulse width
modulation as a principle of speed control in real-world
robotics. Encoders are used to return the speed of a motor.
Odometry combined with inertia measurements are necessary
for accurate operation in the real-world.



D. Implementation proposal

Computer vision will be implemented for object identifica-
tion and localisation using blob detection. For color detection
the RGB coloration model will be used to return the RGB
value of each object after pickup [2]. Within vrep a predefined
function is used to retrieve an image from the vision sensor and
retrieve the RGB value for a given position within the image.
Both forward and inverse kinematics will be implemented to
drive the robots arm joints to manipulate objects and to drive
the omni-directional base to a target location within the world
cartesian coordinate system. A proximity sensor will be used
to detect potential collisions and will be used to achieve real-
time collision avoidance by making adjustments to the robots
absolute velocity to repel the robot from collideable objects
within the scene.

II. DETAILS OF THE APPROACH

A. Description & contribution

1) Design: In order to address the given problem in ware-
house fulfilment a robot needs to be designed to meet the
motivation of this paper. Industrial robotics are offered by
many companies, the robot used in this paper will be kuka’s
youBot. This robot consists of a omni-directional mobile
platform implemented using a 4 mecanum wheel configuration
this allows the youBot to achieve holonomic movement about
a 2D plane [5]. A 5 degrees of freedom robotic arm is
attached to the platform that can operate independently to
the base. The Kuka youBot remains relevant and active in
academic literature so many approaches have been developed
for its operation. Using the v-rep simulation platform a virtual
version of the kuka youBot is implemented. For the scenario
this paper explores the use of sensory data needs to be applied,
4 ultrasonic proximity sensors are affixed on each face of
youBot’s plastic covering denoted as Pn.

Fig. 1. Proximity sensor configuration

Cameras are also implemented, one is affixed to the front
of the youBot for object localisation so its reference frame

remains constant for faster data processing. To gather the
required information from the sensor a blob recognition al-
gorithm will be implemented to return the absolute location
of the box within the world coordinates. A second camera is
affixed to the end-effector (gripper) of youBot’s arm this will
be used to return the RGB value of the currently manipulated
object.

Fig. 2. Sensory configuration.

2) Movement: In order to move a robotic manipulator its
kinematic structure needs to be defined. Within v-rep the scene
hierarchy is used to build a kinematic structure formed as a
tree of joints and links. Using the simulators’ API a kinematic
group can be used to build an equivalent kinematic model via
the functions provided by the kinematics plugin.

Within the scenario detailed forward kinematics are used to
reach a pre-defined position that will be used as a reference
position for object manipulation. Forward kinematics is used
in the first instance of movement where the arm is initialised
to its reference position, due to the lower time complexity of
the algorithm that controls its movement, setting joint angles
is less processing heavy than inverse kinematics where joint
angles need to be calculated based on the position of the end-
effector.

First the robot’s omni-directional base is translated to a new
target position, each wheel joint is given a set velocity to drive
the robot to the target position using forward kinematics. The
arm is then actuated to its reference position using forward
kinematics. Concurrently whist the arm is being actuated, the
front camera is active and a reading is taken from its image
frame blob detection is applied and a measurement is taken of
blob1 relative to the camera frame, this is then transformed to
the world cartesian coordinate system where the location of the
cube can be identified. YouBot’s arm can then be manipulated
to the target location using inverse kinematics and the object
can be picked.

3) Computer vision: For object localisation blob detection
has been implemented to return the x,y location of the center of
the front face of the box, however its depth cannot be perceived
without the use of a collocated second camera [6]. Since the
depth of each box is constant it’s Y coordinate can be adjusted
by half the depth of the box to correspond the new point with
the center of the box. Once the object has been picked camera



1 returns the RGB value for the box being manipulated and the
box is sorted accordingly to the correct drop point, youBot’s
base is then driven to a new target location where the box is
to be dropped.

Fig. 3. Sorting algorithm using RGB values

4) Navigation: Navigation is achieved by setting a target
position for the base to drive towards, the robot is driven
towards the target position using forward kinematics via the
shortest possible path. Obstructions to navigation are beyond
the scope of this function and are handled separately since the
robot is not aware of its path it cannot detect an intersection
with a collideable object at this phase. Nodes can be set to
intermediate points between the origin of the base and its target
position, the same approach is used where the robot finds the
shortest path to each node, using this method any navigation
path can be achieved so the robot with a few adjustments can
better adapt to a changing environment. Figure 3 shows node
placement, sequence 1,2 is used when driven to node 3, node
sequence 2,1 is used when returning to the pickup location.

Fig. 4. Node based navigation planning

5) Collision avoidance: Collision avoidance is achieved
using 4 independent ultrasonic sensors figure 5 shows the lua
implementation used. Sensor P3 is reserved for stopping the
robot, if a user needs the robot to stop they can approach
from behind and the robot will stay in position until the user
moves away. If an object is detected by P0 then the robot is
driven to the right until the object is no longer detected youBot
then resumes its previous trajectory. In the same way, P1 and
P2 drive the robot away from a detected object right and left
respectively.

Fig. 5. An algorithm for collision avoidance

B. Justification

Each solution implemented is appropriate and works well
within in this scenario. Movement has been achieved with the
use of the appropriate kinematic structures and approaches
where needed. Computer vision has been used to localise an
object using blob detection, this was the most appropriate
method in this scenario. As boxes fall from the conveyor
their position is not absolute therefore the robot cannot return
to a pre-defined position as pickup may fail, localising the
object at each pickup is needed to achieve and accurate pick.
Collision avoidance has been implemented to avoid a human
worker within the scene so the pick and place task can still
be completed with obstructions, due to the implementation of
ultrasonic sensors any object can be avoided. The real world
semantics of how this approach will work outside the virtual
environment have also been considered.

III. RESULTS ANALYSIS

In order to test and evaluate the reliability of this approach
the scenario simulation was run multiple times Table 1 below
shows a scenario error test, checkpoints were set at the pick
and placing of each box.

All repeats of the simulation completed as expected except
for repeat 2, in this instance youBot failed to pick the second
box, from my observations and quantitative analysis of the
pickup point returned by computer vision is that it can be seen
that the x,y position has been calculated correctly, instance
without orientation change (position X = 2.15163230896,
Position Y = -1.7301875352859). An instance with orien-
tation change (position X = 2.1329510211945, position Y
= -1.730813741684). x has a difference of 0.019 this is a
variation in drop position and not a failure of computer vision.
The failure in this instance was caused by a change in the
orientation of the box since the blob detection algorithm does
not consider orientation the box slips through the gripper
pushed backwards rather than being picked correctly. Boxes
are then sorted by color, since no color is detected due to the
box not being picked the simulation moves to the next pickup.
As the previous pickup has failed this effects subsequent drops
so all subsequent pickups also fail.



Fig. 6. A table showing simulation results

Collision avoidance works as intended, robotic manipulation
is adjusted so the robot can still continue to operate and
achieve its task correctly whilst collideable objects are within
the scene. Color detection also works as intended each box is
identified correctly on each pickup with no errors observed.

IV. DISCUSSION AND CONCLUSIONS

Collision avoidance works within the planned scenario, out-
side this however there will be instances where this approach
would fail. Shown in figure 7 an object has been detected on
the right of the robot and also on the left in this instance the
robot changes velocity to avoid the object on the right and
the left simultaneously this creates an infinite loop where the
robot moves left to avoid an object and again right to avoid
the object creating a left right motion and causing excessive
jerk.

Fig. 7. Instance of failure of collision avoidance

This failure however is not fatal, once the person on the right
moves away from the robot the left obstacle will be avoided
and the robot will again be driven towards its target. Figure
8 shows youBot’s velocity, consider the time interval between
1050 seconds to 1070 seconds this is when the robot is stuck in
it’s infinite loop, after the time of 1070 the human has moved
and the robot can return to its previous trajectory.

The method of collision avoidance presented in this paper
could be further improved by creating a more comprehensive

Fig. 8. Graphical representation of absolute velocity

decision tree where scenarios such as the infinite left right loop
presented can be detected where a more appropriate decision
can be made. Alternatively it may be appropriate given the
scenario to implement another method of object avoidance by
using a better method of navigation. The method presented in
[7] uses a location sensor system and environment mapping
to plan the robots path that can better adjust to a dynamic
environment.

The method of computer vision used in this paper proved to
return a fatal result where the entire simulation was effected
and of consequence then failed. It may be more appropriate
not to have the conveyor belt drop boxes and instead have
the robot pick boxes directly from the conveyor this would
decrease the potential for orientation change and would create
a more reliable solution. In order to improve the current
scenario in the real world a Kinect sensor can be implemented.
Since the Kinect incorporates a depth sensor [8] orientation
of the box can be calculated by comparing the depth value at
adjacent sides of the box, if an edge is facing the depth sensor,
depth values will be larger and a change in orientation can be
perceived .

REFERENCES

[1] Robert Bogue Growth in e commerce boosts innovation in the warehouse
robot market ” Industrial Robot: An International Journal 43/6 (2016)
583 587.

[2] S. Chakole and N. Ukani, ”Low Cost Vision System for Pick and
Place application using camera and ABB Industrial Robot,” 2020
11th International Conference on Computing, Communication and Net-
working Technol ogies (ICCCNT), Kharagpur, India, 2020, pp. 1 6,
doi:10.1109/ICCCNT49239.2020.9225522. K. Elissa, “An Overview of
Decision Theory,” unpublished. (Unpublished manu- script)

[3] R. Mishra and A. Javed, ”ROS based service robot platform,” 2018
4th International Conference on Control, Automation and Robotics
(ICCAR), 2018, pp. 55-59, doi: 10.1109/ICCAR.2018.8384644.

[4] Jeff Smoot, 18/12/21, Comparing Proximity Sensor Technologies,
https://www.cuidevices.com/blog/comparing-proximity-sensor-
technologies

[5] R. Bischoff, U. Huggenberger and E. Prassler, ”KUKA youBot - a
mobile manipulator for research and education,” 2011 IEEE Interna-
tional Conference on Robotics and Automation, 2011, pp. 1-4, doi:
10.1109/ICRA.2011.5980575.

[6] L. Wang and H. Ju, ”A Robust Blob Detection and Delineation
Method,” 2008 International Workshop on Education Technology and
Training 2008 International Workshop on Geoscience and Remote
Sensing, 2008, pp. 827-830, doi: 10.1109/ETTandGRS.2008.294.

[7] Jae-Han Park, Seung-Ho Baeg and Moon-Hong Baeg, ”An intelligent
navigation method for service robots in the smart environment,” 2007
International Conference on Control, Automation and Systems, 2007,
pp. 494-499, doi: 10.1109/ICCAS.2007.4406960.



[8] A. Basiri, M. A. Oskoei, A. Basiri and A. M. Shahri, ”Improving Robot
Navigation and Obstacle Avoidance using Kinect 2.0,” 2017 5th RSI
International Conference on Robotics and Mechatronics (ICRoM), 2017,
pp. 486-489, doi: 10.1109/ICRoM.2017.8466145.

[9] E. Maulana, M. A. Muslim and V. Hendrayawan, ”Inverse kinematic
implementation of four-wheels mecanum drive mobile robot using
stepper motors,” 2015 International Seminar on Intelligent Technology
and Its Applications (ISITIA), 2015, pp. 51-56, doi: 10.1109/ISI-
TIA.2015.7219952.


